MakeItFrom.com
Menu (ESC)

C49300 Brass vs. EN 1.4418 Stainless Steel

C49300 brass belongs to the copper alloys classification, while EN 1.4418 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is EN 1.4418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 4.5 to 20
16 to 20
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 270 to 290
530 to 620
Tensile Strength: Ultimate (UTS), MPa 430 to 520
860 to 1000
Tensile Strength: Yield (Proof), MPa 210 to 410
540 to 790

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
870
Melting Completion (Liquidus), °C 880
1450
Melting Onset (Solidus), °C 840
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 88
15
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 26
13
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 50
39
Embodied Water, L/kg 370
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
130 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
730 to 1590
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 18
31 to 36
Strength to Weight: Bending, points 16 to 18
26 to 28
Thermal Diffusivity, mm2/s 29
4.0
Thermal Shock Resistance, points 14 to 18
31 to 36

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.1
73.2 to 80.2
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.5
Nickel (Ni), % 0 to 1.5
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.2
0 to 0.040
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.0 to 1.8
0
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0