MakeItFrom.com
Menu (ESC)

C49300 Brass vs. EN 1.4482 Stainless Steel

C49300 brass belongs to the copper alloys classification, while EN 1.4482 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is EN 1.4482 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 4.5 to 20
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 270 to 290
510 to 530
Tensile Strength: Ultimate (UTS), MPa 430 to 520
770 to 800
Tensile Strength: Yield (Proof), MPa 210 to 410
530 to 570

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 880
1420
Melting Onset (Solidus), °C 840
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 88
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 26
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 50
38
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
230 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
690 to 820
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 18
28 to 29
Strength to Weight: Bending, points 16 to 18
24 to 25
Thermal Diffusivity, mm2/s 29
4.0
Thermal Shock Resistance, points 14 to 18
21 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 21.5
Copper (Cu), % 58 to 62
0 to 1.0
Iron (Fe), % 0 to 0.1
66.1 to 74.9
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0 to 1.5
1.5 to 3.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0 to 0.2
0 to 0.035
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.0 to 1.8
0
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0