MakeItFrom.com
Menu (ESC)

C49300 Brass vs. EN 1.4567 Stainless Steel

C49300 brass belongs to the copper alloys classification, while EN 1.4567 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.5 to 20
22 to 51
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 270 to 290
390 to 490
Tensile Strength: Ultimate (UTS), MPa 430 to 520
550 to 780
Tensile Strength: Yield (Proof), MPa 210 to 410
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
930
Melting Completion (Liquidus), °C 880
1410
Melting Onset (Solidus), °C 840
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 88
11
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 26
16
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.1
Embodied Energy, MJ/kg 50
43
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
100 to 400
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 18
19 to 27
Strength to Weight: Bending, points 16 to 18
19 to 24
Thermal Diffusivity, mm2/s 29
3.0
Thermal Shock Resistance, points 14 to 18
12 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 58 to 62
3.0 to 4.0
Iron (Fe), % 0 to 0.1
63.3 to 71.5
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Nickel (Ni), % 0 to 1.5
8.5 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.2
0 to 0.045
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.0 to 1.8
0
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0