MakeItFrom.com
Menu (ESC)

C49300 Brass vs. EN 1.6368 Steel

C49300 brass belongs to the copper alloys classification, while EN 1.6368 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is EN 1.6368 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.5 to 20
18
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 270 to 290
410 to 430
Tensile Strength: Ultimate (UTS), MPa 430 to 520
660 to 690
Tensile Strength: Yield (Proof), MPa 210 to 410
460 to 490

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
410
Melting Completion (Liquidus), °C 880
1460
Melting Onset (Solidus), °C 840
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 88
40
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 17
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 26
3.4
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.7
Embodied Energy, MJ/kg 50
22
Embodied Water, L/kg 370
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
580 to 650
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 18
23 to 24
Strength to Weight: Bending, points 16 to 18
21 to 22
Thermal Diffusivity, mm2/s 29
11
Thermal Shock Resistance, points 14 to 18
20

Alloy Composition

Aluminum (Al), % 0 to 0.5
0.015 to 0.040
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 58 to 62
0.5 to 0.8
Iron (Fe), % 0 to 0.1
95.1 to 97.2
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0 to 1.5
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.2
0 to 0.025
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0.25 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 1.0 to 1.8
0
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0