MakeItFrom.com
Menu (ESC)

C49300 Brass vs. EN 1.8516 Steel

C49300 brass belongs to the copper alloys classification, while EN 1.8516 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is EN 1.8516 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.5 to 20
11
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
74
Shear Strength, MPa 270 to 290
660
Tensile Strength: Ultimate (UTS), MPa 430 to 520
1100
Tensile Strength: Yield (Proof), MPa 210 to 410
910

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 120
470
Melting Completion (Liquidus), °C 880
1460
Melting Onset (Solidus), °C 840
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 88
39
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 17
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 26
3.7
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.7
Embodied Energy, MJ/kg 50
22
Embodied Water, L/kg 370
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
120
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
2190
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 18
39
Strength to Weight: Bending, points 16 to 18
30
Thermal Diffusivity, mm2/s 29
10
Thermal Shock Resistance, points 14 to 18
32

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Carbon (C), % 0
0.2 to 0.27
Chromium (Cr), % 0
3.0 to 3.5
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.1
94.6 to 96.1
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
0.4 to 0.7
Molybdenum (Mo), % 0
0.5 to 0.7
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.2
0 to 0.025
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 1.0 to 1.8
0
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0