MakeItFrom.com
Menu (ESC)

C49300 Brass vs. EN 2.4952 Nickel

C49300 brass belongs to the copper alloys classification, while EN 2.4952 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is EN 2.4952 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.5 to 20
17
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
74
Shear Strength, MPa 270 to 290
700
Tensile Strength: Ultimate (UTS), MPa 430 to 520
1150
Tensile Strength: Yield (Proof), MPa 210 to 410
670

Thermal Properties

Latent Heat of Fusion, J/g 170
330
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 880
1350
Melting Onset (Solidus), °C 840
1300
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 88
12
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 17
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 26
55
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 3.0
9.8
Embodied Energy, MJ/kg 50
140
Embodied Water, L/kg 370
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
170
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
1180
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 15 to 18
38
Strength to Weight: Bending, points 16 to 18
29
Thermal Diffusivity, mm2/s 29
3.1
Thermal Shock Resistance, points 14 to 18
33

Alloy Composition

Aluminum (Al), % 0 to 0.5
1.0 to 1.8
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Boron (B), % 0
0 to 0.0080
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 58 to 62
0 to 0.2
Iron (Fe), % 0 to 0.1
0 to 1.5
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Nickel (Ni), % 0 to 1.5
65 to 79.2
Phosphorus (P), % 0 to 0.2
0 to 0.020
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.0 to 1.8
0
Titanium (Ti), % 0
1.8 to 2.7
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0