MakeItFrom.com
Menu (ESC)

C49300 Brass vs. SAE-AISI 1010 Steel

C49300 brass belongs to the copper alloys classification, while SAE-AISI 1010 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is SAE-AISI 1010 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.5 to 20
22 to 31
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 270 to 290
230 to 250
Tensile Strength: Ultimate (UTS), MPa 430 to 520
350 to 400
Tensile Strength: Yield (Proof), MPa 210 to 410
190 to 330

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 880
1470
Melting Onset (Solidus), °C 840
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 88
47
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
12
Electrical Conductivity: Equal Weight (Specific), % IACS 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 26
1.8
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 50
18
Embodied Water, L/kg 370
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
82 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
100 to 290
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 18
12 to 14
Strength to Weight: Bending, points 16 to 18
14 to 15
Thermal Diffusivity, mm2/s 29
13
Thermal Shock Resistance, points 14 to 18
11 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Carbon (C), % 0
0.080 to 0.13
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.1
99.18 to 99.62
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
0.3 to 0.6
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.2
0 to 0.040
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 1.0 to 1.8
0
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0