MakeItFrom.com
Menu (ESC)

C49300 Brass vs. SAE-AISI 1527 Steel

C49300 brass belongs to the copper alloys classification, while SAE-AISI 1527 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is SAE-AISI 1527 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.5 to 20
13 to 21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 270 to 290
370 to 390
Tensile Strength: Ultimate (UTS), MPa 430 to 520
590 to 640
Tensile Strength: Yield (Proof), MPa 210 to 410
320 to 550

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 880
1460
Melting Onset (Solidus), °C 840
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 88
52
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 17
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 26
1.8
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 50
19
Embodied Water, L/kg 370
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
82 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
260 to 800
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 18
21 to 23
Strength to Weight: Bending, points 16 to 18
20 to 21
Thermal Diffusivity, mm2/s 29
14
Thermal Shock Resistance, points 14 to 18
19 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Carbon (C), % 0
0.22 to 0.29
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.1
98.1 to 98.6
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
1.2 to 1.5
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.2
0 to 0.040
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 1.0 to 1.8
0
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0