MakeItFrom.com
Menu (ESC)

C49300 Brass vs. C27400 Brass

Both C49300 brass and C27400 brass are copper alloys. They have a very high 96% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is C27400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 430 to 520
370 to 650

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 120
120
Melting Completion (Liquidus), °C 880
920
Melting Onset (Solidus), °C 840
870
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 88
120
Thermal Expansion, µm/m-K 20
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
28
Electrical Conductivity: Equal Weight (Specific), % IACS 17
31

Otherwise Unclassified Properties

Base Metal Price, % relative 26
23
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 50
45
Embodied Water, L/kg 370
320

Common Calculations

Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 15 to 18
13 to 23
Strength to Weight: Bending, points 16 to 18
14 to 21
Thermal Diffusivity, mm2/s 29
37
Thermal Shock Resistance, points 14 to 18
12 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Copper (Cu), % 58 to 62
61 to 64
Iron (Fe), % 0 to 0.1
0 to 0.1
Lead (Pb), % 0 to 0.010
0 to 0.050
Manganese (Mn), % 0 to 0.030
0
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.2
0
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 1.0 to 1.8
0
Zinc (Zn), % 30.6 to 40.5
35.6 to 39
Residuals, % 0
0 to 0.3

Comparable Variants