MakeItFrom.com
Menu (ESC)

C49300 Brass vs. N06920 Nickel

C49300 brass belongs to the copper alloys classification, while N06920 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 4.5 to 20
39
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
82
Shear Strength, MPa 270 to 290
500
Tensile Strength: Ultimate (UTS), MPa 430 to 520
730
Tensile Strength: Yield (Proof), MPa 210 to 410
270

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
990
Melting Completion (Liquidus), °C 880
1500
Melting Onset (Solidus), °C 840
1440
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 88
11
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 17
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 26
55
Density, g/cm3 8.0
8.6
Embodied Carbon, kg CO2/kg material 3.0
9.4
Embodied Energy, MJ/kg 50
130
Embodied Water, L/kg 370
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
230
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
180
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 15 to 18
24
Strength to Weight: Bending, points 16 to 18
21
Thermal Diffusivity, mm2/s 29
2.8
Thermal Shock Resistance, points 14 to 18
19

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.1
17 to 20
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0 to 1.5
36.9 to 53.5
Phosphorus (P), % 0 to 0.2
0 to 0.040
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.0 to 1.8
0
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0