MakeItFrom.com
Menu (ESC)

C49300 Brass vs. S13800 Stainless Steel

C49300 brass belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 4.5 to 20
11 to 18
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 270 to 290
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 430 to 520
980 to 1730
Tensile Strength: Yield (Proof), MPa 210 to 410
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
810
Melting Completion (Liquidus), °C 880
1450
Melting Onset (Solidus), °C 840
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 88
16
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 26
15
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 3.0
3.4
Embodied Energy, MJ/kg 50
46
Embodied Water, L/kg 370
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
1090 to 5490
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 18
35 to 61
Strength to Weight: Bending, points 16 to 18
28 to 41
Thermal Diffusivity, mm2/s 29
4.3
Thermal Shock Resistance, points 14 to 18
33 to 58

Alloy Composition

Aluminum (Al), % 0 to 0.5
0.9 to 1.4
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.1
73.6 to 77.3
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 1.5
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.2
0 to 0.010
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Tin (Sn), % 1.0 to 1.8
0
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0