MakeItFrom.com
Menu (ESC)

C49300 Brass vs. S35045 Stainless Steel

C49300 brass belongs to the copper alloys classification, while S35045 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is S35045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 4.5 to 20
39
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 270 to 290
370
Tensile Strength: Ultimate (UTS), MPa 430 to 520
540
Tensile Strength: Yield (Proof), MPa 210 to 410
190

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 880
1390
Melting Onset (Solidus), °C 840
1340
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 88
12
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 26
34
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 3.0
5.8
Embodied Energy, MJ/kg 50
83
Embodied Water, L/kg 370
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
170
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
94
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 18
19
Strength to Weight: Bending, points 16 to 18
19
Thermal Diffusivity, mm2/s 29
3.2
Thermal Shock Resistance, points 14 to 18
12

Alloy Composition

Aluminum (Al), % 0 to 0.5
0.15 to 0.6
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Carbon (C), % 0
0.060 to 0.1
Chromium (Cr), % 0
25 to 29
Copper (Cu), % 58 to 62
0 to 0.75
Iron (Fe), % 0 to 0.1
29.4 to 42.6
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
0 to 1.5
Nickel (Ni), % 0 to 1.5
32 to 37
Phosphorus (P), % 0 to 0.2
0 to 0.045
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.0 to 1.8
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0