MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. AISI 440B Stainless Steel

C50100 bronze belongs to the copper alloys classification, while AISI 440B stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is AISI 440B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 40
3.0 to 18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 180
460 to 1110
Tensile Strength: Ultimate (UTS), MPa 270
740 to 1930
Tensile Strength: Yield (Proof), MPa 82
430 to 1860

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 1080
1480
Melting Onset (Solidus), °C 1070
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 230
23
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 55
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.0
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.2
Embodied Energy, MJ/kg 42
31
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
57 to 110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.3
27 to 70
Strength to Weight: Bending, points 10
24 to 45
Thermal Diffusivity, mm2/s 66
6.1
Thermal Shock Resistance, points 9.5
27 to 70

Alloy Composition

Carbon (C), % 0
0.75 to 1.0
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 98.6 to 99.49
0
Iron (Fe), % 0 to 0.050
78.2 to 83.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0.010 to 0.050
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 0.8
0
Residuals, % 0 to 0.5
0