MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. ASTM A182 Grade F6b

C50100 bronze belongs to the copper alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 40
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 180
530
Tensile Strength: Ultimate (UTS), MPa 270
850
Tensile Strength: Yield (Proof), MPa 82
710

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
750
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1070
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 230
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 55
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
8.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.2
Embodied Energy, MJ/kg 42
30
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
140
Resilience: Unit (Modulus of Resilience), kJ/m3 29
1280
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.3
30
Strength to Weight: Bending, points 10
26
Thermal Diffusivity, mm2/s 66
6.7
Thermal Shock Resistance, points 9.5
31

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 98.6 to 99.49
0 to 0.5
Iron (Fe), % 0 to 0.050
81.2 to 87.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0.010 to 0.050
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 0.8
0
Residuals, % 0 to 0.5
0