MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. EN 1.4537 Stainless Steel

C50100 bronze belongs to the copper alloys classification, while EN 1.4537 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is EN 1.4537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 40
42
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Shear Strength, MPa 180
480
Tensile Strength: Ultimate (UTS), MPa 270
700
Tensile Strength: Yield (Proof), MPa 82
330

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1070
1390
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 230
14
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 55
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
34
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.6
6.1
Embodied Energy, MJ/kg 42
84
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
240
Resilience: Unit (Modulus of Resilience), kJ/m3 29
270
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.3
24
Strength to Weight: Bending, points 10
22
Thermal Diffusivity, mm2/s 66
3.7
Thermal Shock Resistance, points 9.5
15

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 98.6 to 99.49
1.0 to 2.0
Iron (Fe), % 0 to 0.050
36.3 to 46.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.7 to 5.7
Nickel (Ni), % 0
24 to 27
Nitrogen (N), % 0
0.17 to 0.25
Phosphorus (P), % 0.010 to 0.050
0 to 0.030
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.5 to 0.8
0
Residuals, % 0 to 0.5
0