MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. EN 1.4607 Stainless Steel

C50100 bronze belongs to the copper alloys classification, while EN 1.4607 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is EN 1.4607 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 40
21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 180
330
Tensile Strength: Ultimate (UTS), MPa 270
530
Tensile Strength: Yield (Proof), MPa 82
270

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
930
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1070
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 230
18
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 55
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 42
40
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
91
Resilience: Unit (Modulus of Resilience), kJ/m3 29
190
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.3
19
Strength to Weight: Bending, points 10
19
Thermal Diffusivity, mm2/s 66
4.9
Thermal Shock Resistance, points 9.5
19

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18.5 to 20.5
Copper (Cu), % 98.6 to 99.49
0
Iron (Fe), % 0 to 0.050
75.6 to 81.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0.010 to 0.050
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 0.8
0
Titanium (Ti), % 0
0.15 to 0.8
Residuals, % 0 to 0.5
0