MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. Grade 24 Titanium

C50100 bronze belongs to the copper alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 40
11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Shear Strength, MPa 180
610
Tensile Strength: Ultimate (UTS), MPa 270
1010
Tensile Strength: Yield (Proof), MPa 82
940

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
340
Melting Completion (Liquidus), °C 1080
1610
Melting Onset (Solidus), °C 1070
1560
Specific Heat Capacity, J/kg-K 380
560
Thermal Conductivity, W/m-K 230
7.1
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 55
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 2.6
43
Embodied Energy, MJ/kg 42
710
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
110
Resilience: Unit (Modulus of Resilience), kJ/m3 29
4160
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 8.3
63
Strength to Weight: Bending, points 10
50
Thermal Diffusivity, mm2/s 66
2.9
Thermal Shock Resistance, points 9.5
72

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 98.6 to 99.49
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.050
0 to 0.4
Lead (Pb), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0.010 to 0.050
0
Tin (Sn), % 0.5 to 0.8
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4