MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. SAE-AISI 1022 Steel

C50100 bronze belongs to the copper alloys classification, while SAE-AISI 1022 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is SAE-AISI 1022 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 40
17 to 26
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 180
310 to 340
Tensile Strength: Ultimate (UTS), MPa 270
480 to 550
Tensile Strength: Yield (Proof), MPa 82
260 to 450

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 230
52
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 55
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 42
18
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 29
190 to 530
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.3
17 to 19
Strength to Weight: Bending, points 10
17 to 19
Thermal Diffusivity, mm2/s 66
14
Thermal Shock Resistance, points 9.5
15 to 17

Alloy Composition

Carbon (C), % 0
0.18 to 0.23
Copper (Cu), % 98.6 to 99.49
0
Iron (Fe), % 0 to 0.050
98.7 to 99.12
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.7 to 1.0
Phosphorus (P), % 0.010 to 0.050
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.5 to 0.8
0
Residuals, % 0 to 0.5
0