MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. Type 3 Magnetic Alloy

C50100 bronze belongs to the copper alloys classification, while Type 3 magnetic alloy belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is Type 3 magnetic alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
180
Elongation at Break, % 40
43
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
70
Shear Strength, MPa 180
380
Tensile Strength: Ultimate (UTS), MPa 270
550
Tensile Strength: Yield (Proof), MPa 82
210

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
910
Melting Completion (Liquidus), °C 1080
1370
Melting Onset (Solidus), °C 1070
1320
Specific Heat Capacity, J/kg-K 380
450
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 55
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
55
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.6
8.7
Embodied Energy, MJ/kg 42
120
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
190
Resilience: Unit (Modulus of Resilience), kJ/m3 29
120
Stiffness to Weight: Axial, points 7.2
12
Stiffness to Weight: Bending, points 18
22
Strength to Weight: Axial, points 8.3
18
Strength to Weight: Bending, points 10
17
Thermal Shock Resistance, points 9.5
18

Alloy Composition

Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
2.0 to 3.0
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 98.6 to 99.49
4.0 to 6.0
Iron (Fe), % 0 to 0.050
9.9 to 19
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
75 to 78
Phosphorus (P), % 0.010 to 0.050
0 to 0.010
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 0.8
0
Residuals, % 0 to 0.5
0