MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. N06219 Nickel

C50100 bronze belongs to the copper alloys classification, while N06219 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is N06219 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 40
48
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
79
Shear Strength, MPa 180
520
Tensile Strength: Ultimate (UTS), MPa 270
730
Tensile Strength: Yield (Proof), MPa 82
300

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1070
1380
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 230
10
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 55
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
60
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
11
Embodied Energy, MJ/kg 42
140
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
280
Resilience: Unit (Modulus of Resilience), kJ/m3 29
230
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.3
24
Strength to Weight: Bending, points 10
21
Thermal Diffusivity, mm2/s 66
2.7
Thermal Shock Resistance, points 9.5
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
18 to 22
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 98.6 to 99.49
0 to 0.5
Iron (Fe), % 0 to 0.050
2.0 to 4.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
7.0 to 9.0
Nickel (Ni), % 0
60.8 to 72.3
Phosphorus (P), % 0.010 to 0.050
0 to 0.020
Silicon (Si), % 0
0.7 to 1.1
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.5 to 0.8
0
Titanium (Ti), % 0
0 to 0.5
Residuals, % 0 to 0.5
0