MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. N08026 Nickel

C50100 bronze belongs to the copper alloys classification, while N08026 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is N08026 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 40
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Shear Strength, MPa 180
410
Tensile Strength: Ultimate (UTS), MPa 270
620
Tensile Strength: Yield (Proof), MPa 82
270

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1070
1380
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 230
12
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 55
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
41
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 2.6
7.2
Embodied Energy, MJ/kg 42
98
Embodied Water, L/kg 310
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
170
Resilience: Unit (Modulus of Resilience), kJ/m3 29
180
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.3
21
Strength to Weight: Bending, points 10
20
Thermal Diffusivity, mm2/s 66
3.2
Thermal Shock Resistance, points 9.5
15

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 26
Copper (Cu), % 98.6 to 99.49
2.0 to 4.0
Iron (Fe), % 0 to 0.050
24.4 to 37.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.7
Nickel (Ni), % 0
33 to 37.2
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0.010 to 0.050
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 0.8
0
Residuals, % 0 to 0.5
0