MakeItFrom.com
Menu (ESC)

C51000 Bronze vs. EN 2.4669 Nickel

C51000 bronze belongs to the copper alloys classification, while EN 2.4669 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C51000 bronze and the bottom bar is EN 2.4669 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.7 to 64
16
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 250 to 460
680
Tensile Strength: Ultimate (UTS), MPa 330 to 780
1110
Tensile Strength: Yield (Proof), MPa 130 to 750
720

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 190
960
Melting Completion (Liquidus), °C 1050
1380
Melting Onset (Solidus), °C 960
1330
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 77
12
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 18
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
60
Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 3.1
10
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 350
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.0 to 490
160
Resilience: Unit (Modulus of Resilience), kJ/m3 75 to 2490
1380
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 10 to 25
37
Strength to Weight: Bending, points 12 to 21
28
Thermal Diffusivity, mm2/s 23
3.1
Thermal Shock Resistance, points 12 to 28
33

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 92.9 to 95.5
0 to 0.5
Iron (Fe), % 0 to 0.1
5.0 to 9.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
65.9 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0.030 to 0.35
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 4.5 to 5.8
0
Titanium (Ti), % 0
2.3 to 2.8
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0