MakeItFrom.com
Menu (ESC)

C51000 Bronze vs. S40945 Stainless Steel

C51000 bronze belongs to the copper alloys classification, while S40945 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C51000 bronze and the bottom bar is S40945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.7 to 64
25
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 26 to 97
69
Shear Modulus, GPa 42
75
Shear Strength, MPa 250 to 460
270
Tensile Strength: Ultimate (UTS), MPa 330 to 780
430
Tensile Strength: Yield (Proof), MPa 130 to 750
230

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 190
710
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 960
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 77
26
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 18
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
8.0
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.2
Embodied Energy, MJ/kg 50
31
Embodied Water, L/kg 350
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.0 to 490
89
Resilience: Unit (Modulus of Resilience), kJ/m3 75 to 2490
140
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 25
15
Strength to Weight: Bending, points 12 to 21
16
Thermal Diffusivity, mm2/s 23
6.9
Thermal Shock Resistance, points 12 to 28
15

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 92.9 to 95.5
0
Iron (Fe), % 0 to 0.1
85.1 to 89.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.18 to 0.4
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0.030 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 4.5 to 5.8
0
Titanium (Ti), % 0
0.050 to 0.2
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0