MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. 2014A Aluminum

C51100 bronze belongs to the copper alloys classification, while 2014A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C51100 bronze and the bottom bar is 2014A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
72
Elongation at Break, % 2.5 to 50
6.2 to 16
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
27
Shear Strength, MPa 230 to 410
130 to 290
Tensile Strength: Ultimate (UTS), MPa 330 to 720
210 to 490
Tensile Strength: Yield (Proof), MPa 93 to 700
110 to 430

Thermal Properties

Latent Heat of Fusion, J/g 200
400
Maximum Temperature: Mechanical, °C 190
210
Melting Completion (Liquidus), °C 1060
640
Melting Onset (Solidus), °C 970
510
Specific Heat Capacity, J/kg-K 380
870
Thermal Conductivity, W/m-K 84
150
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
37
Electrical Conductivity: Equal Weight (Specific), % IACS 20
110

Otherwise Unclassified Properties

Base Metal Price, % relative 32
11
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 3.0
8.1
Embodied Energy, MJ/kg 48
150
Embodied Water, L/kg 340
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
85 to 1300
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
46
Strength to Weight: Axial, points 10 to 22
19 to 45
Strength to Weight: Bending, points 12 to 20
26 to 46
Thermal Diffusivity, mm2/s 25
55
Thermal Shock Resistance, points 12 to 26
9.0 to 22

Alloy Composition

Aluminum (Al), % 0
90.8 to 95
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 93.8 to 96.5
3.9 to 5.0
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 0
0.4 to 1.2
Nickel (Ni), % 0
0 to 0.1
Phosphorus (P), % 0.030 to 0.35
0
Silicon (Si), % 0
0.5 to 0.9
Tin (Sn), % 3.5 to 4.9
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.3
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15