MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. ACI-ASTM CA6N Steel

C51100 bronze belongs to the copper alloys classification, while ACI-ASTM CA6N steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is ACI-ASTM CA6N steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 50
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
75
Tensile Strength: Ultimate (UTS), MPa 330 to 720
1080
Tensile Strength: Yield (Proof), MPa 93 to 700
1060

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 190
740
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 970
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
23
Thermal Expansion, µm/m-K 18
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 20
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 32
11
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.5
Embodied Energy, MJ/kg 48
35
Embodied Water, L/kg 340
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
180
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
2900
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 22
38
Strength to Weight: Bending, points 12 to 20
30
Thermal Diffusivity, mm2/s 25
6.1
Thermal Shock Resistance, points 12 to 26
40

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 93.8 to 96.5
0
Iron (Fe), % 0 to 0.1
77.9 to 83.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
6.0 to 8.0
Phosphorus (P), % 0.030 to 0.35
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 3.5 to 4.9
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0