MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. AWS E320LR

C51100 bronze belongs to the copper alloys classification, while AWS E320LR belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is AWS E320LR.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.5 to 50
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 330 to 720
580

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Melting Completion (Liquidus), °C 1060
1410
Melting Onset (Solidus), °C 970
1360
Specific Heat Capacity, J/kg-K 380
460
Thermal Expansion, µm/m-K 18
14

Otherwise Unclassified Properties

Base Metal Price, % relative 32
36
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 3.0
6.2
Embodied Energy, MJ/kg 48
87
Embodied Water, L/kg 340
220

Common Calculations

Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10 to 22
20
Strength to Weight: Bending, points 12 to 20
19
Thermal Shock Resistance, points 12 to 26
15

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 93.8 to 96.5
3.0 to 4.0
Iron (Fe), % 0 to 0.1
32.7 to 42.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
1.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 36
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0.030 to 0.35
0 to 0.020
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 3.5 to 4.9
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0