MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. EN 1.4110 Stainless Steel

C51100 bronze belongs to the copper alloys classification, while EN 1.4110 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 50
11 to 14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 230 to 410
470 to 1030
Tensile Strength: Ultimate (UTS), MPa 330 to 720
770 to 1720
Tensile Strength: Yield (Proof), MPa 93 to 700
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 190
790
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 970
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
30
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 20
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 32
8.0
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.3
Embodied Energy, MJ/kg 48
33
Embodied Water, L/kg 340
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
480 to 4550
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 22
28 to 62
Strength to Weight: Bending, points 12 to 20
24 to 41
Thermal Diffusivity, mm2/s 25
8.1
Thermal Shock Resistance, points 12 to 26
27 to 60

Alloy Composition

Carbon (C), % 0
0.48 to 0.6
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 93.8 to 96.5
0
Iron (Fe), % 0 to 0.1
81.4 to 86
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 0.8
Phosphorus (P), % 0.030 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 3.5 to 4.9
0
Vanadium (V), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0