MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. EN 1.4122 Stainless Steel

C51100 bronze belongs to the copper alloys classification, while EN 1.4122 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is EN 1.4122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.5 to 50
14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 230 to 410
480 to 520
Tensile Strength: Ultimate (UTS), MPa 330 to 720
790 to 850
Tensile Strength: Yield (Proof), MPa 93 to 700
450 to 630

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 190
870
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 970
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
15
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
9.5
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.4
Embodied Energy, MJ/kg 48
33
Embodied Water, L/kg 340
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
93 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
520 to 1000
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 22
28 to 31
Strength to Weight: Bending, points 12 to 20
25 to 26
Thermal Diffusivity, mm2/s 25
4.0
Thermal Shock Resistance, points 12 to 26
28 to 30

Alloy Composition

Carbon (C), % 0
0.33 to 0.45
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 93.8 to 96.5
0
Iron (Fe), % 0 to 0.1
77.2 to 83.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.3
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0.030 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 3.5 to 4.9
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0