MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. EN 1.4547 Stainless Steel

C51100 bronze belongs to the copper alloys classification, while EN 1.4547 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is EN 1.4547 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.5 to 50
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
80
Shear Strength, MPa 230 to 410
510
Tensile Strength: Ultimate (UTS), MPa 330 to 720
750
Tensile Strength: Yield (Proof), MPa 93 to 700
340

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 190
1090
Melting Completion (Liquidus), °C 1060
1470
Melting Onset (Solidus), °C 970
1420
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 84
14
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
28
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 3.0
5.6
Embodied Energy, MJ/kg 48
75
Embodied Water, L/kg 340
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
240
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
290
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10 to 22
26
Strength to Weight: Bending, points 12 to 20
23
Thermal Diffusivity, mm2/s 25
3.8
Thermal Shock Resistance, points 12 to 26
16

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19.5 to 20.5
Copper (Cu), % 93.8 to 96.5
0.5 to 1.0
Iron (Fe), % 0 to 0.1
51 to 56.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
17.5 to 18.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0.030 to 0.35
0 to 0.030
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 3.5 to 4.9
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0