MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. EN 1.4980 Stainless Steel

C51100 bronze belongs to the copper alloys classification, while EN 1.4980 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 50
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
75
Shear Strength, MPa 230 to 410
630
Tensile Strength: Ultimate (UTS), MPa 330 to 720
1030
Tensile Strength: Yield (Proof), MPa 93 to 700
680

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 190
920
Melting Completion (Liquidus), °C 1060
1430
Melting Onset (Solidus), °C 970
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 84
13
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 32
26
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.0
6.0
Embodied Energy, MJ/kg 48
87
Embodied Water, L/kg 340
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
150
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
1180
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10 to 22
36
Strength to Weight: Bending, points 12 to 20
28
Thermal Diffusivity, mm2/s 25
3.5
Thermal Shock Resistance, points 12 to 26
22

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0
13.5 to 16
Copper (Cu), % 93.8 to 96.5
0
Iron (Fe), % 0 to 0.1
49.2 to 58.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0.030 to 0.35
0 to 0.025
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 3.5 to 4.9
0
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0