MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. EN 1.6580 Steel

C51100 bronze belongs to the copper alloys classification, while EN 1.6580 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is EN 1.6580 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 50
11 to 19
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 230 to 410
450 to 700
Tensile Strength: Ultimate (UTS), MPa 330 to 720
720 to 1170
Tensile Strength: Yield (Proof), MPa 93 to 700
460 to 990

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 190
450
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 970
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 84
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 20
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 32
4.3
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.8
Embodied Energy, MJ/kg 48
23
Embodied Water, L/kg 340
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
560 to 2590
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10 to 22
26 to 41
Strength to Weight: Bending, points 12 to 20
23 to 31
Thermal Diffusivity, mm2/s 25
11
Thermal Shock Resistance, points 12 to 26
21 to 34

Alloy Composition

Carbon (C), % 0
0.26 to 0.34
Chromium (Cr), % 0
1.8 to 2.2
Copper (Cu), % 93.8 to 96.5
0
Iron (Fe), % 0 to 0.1
93.7 to 95.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0
1.8 to 2.2
Phosphorus (P), % 0.030 to 0.35
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 3.5 to 4.9
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0