MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. EN 1.7335 Steel

C51100 bronze belongs to the copper alloys classification, while EN 1.7335 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is EN 1.7335 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 50
21 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 230 to 410
310 to 330
Tensile Strength: Ultimate (UTS), MPa 330 to 720
500 to 520
Tensile Strength: Yield (Proof), MPa 93 to 700
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 190
430
Melting Completion (Liquidus), °C 1060
1470
Melting Onset (Solidus), °C 970
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 84
44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 20
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 32
2.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.6
Embodied Energy, MJ/kg 48
21
Embodied Water, L/kg 340
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
91 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
210 to 260
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10 to 22
18
Strength to Weight: Bending, points 12 to 20
18
Thermal Diffusivity, mm2/s 25
12
Thermal Shock Resistance, points 12 to 26
15

Alloy Composition

Carbon (C), % 0
0.080 to 0.18
Chromium (Cr), % 0
0.7 to 1.2
Copper (Cu), % 93.8 to 96.5
0 to 0.3
Iron (Fe), % 0 to 0.1
96.4 to 98.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0.030 to 0.35
0 to 0.025
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 3.5 to 4.9
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0