MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. C82400 Copper

Both C51100 bronze and C82400 copper are copper alloys. They have a very high 96% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 2.5 to 50
1.0 to 20
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
45
Tensile Strength: Ultimate (UTS), MPa 330 to 720
500 to 1030
Tensile Strength: Yield (Proof), MPa 93 to 700
260 to 970

Thermal Properties

Latent Heat of Fusion, J/g 200
230
Maximum Temperature: Mechanical, °C 190
270
Melting Completion (Liquidus), °C 1060
1000
Melting Onset (Solidus), °C 970
900
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 84
130
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
25
Electrical Conductivity: Equal Weight (Specific), % IACS 20
26

Otherwise Unclassified Properties

Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 3.0
8.9
Embodied Energy, MJ/kg 48
140
Embodied Water, L/kg 340
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
10 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
270 to 3870
Stiffness to Weight: Axial, points 7.1
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 10 to 22
16 to 33
Strength to Weight: Bending, points 12 to 20
16 to 26
Thermal Diffusivity, mm2/s 25
39
Thermal Shock Resistance, points 12 to 26
17 to 36

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.2 to 0.65
Copper (Cu), % 93.8 to 96.5
96 to 98.2
Iron (Fe), % 0 to 0.1
0 to 0.2
Lead (Pb), % 0 to 0.050
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0.030 to 0.35
0
Tin (Sn), % 3.5 to 4.9
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0 to 0.3
0 to 0.1
Residuals, % 0
0 to 0.5