MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. C85900 Brass

Both C51100 bronze and C85900 brass are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 2.5 to 50
30
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 330 to 720
460
Tensile Strength: Yield (Proof), MPa 93 to 700
190

Thermal Properties

Latent Heat of Fusion, J/g 200
170
Maximum Temperature: Mechanical, °C 190
130
Melting Completion (Liquidus), °C 1060
830
Melting Onset (Solidus), °C 970
790
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 84
89
Thermal Expansion, µm/m-K 18
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
25
Electrical Conductivity: Equal Weight (Specific), % IACS 20
28

Otherwise Unclassified Properties

Base Metal Price, % relative 32
24
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 3.0
2.9
Embodied Energy, MJ/kg 48
49
Embodied Water, L/kg 340
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
170
Stiffness to Weight: Axial, points 7.1
7.3
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 10 to 22
16
Strength to Weight: Bending, points 12 to 20
17
Thermal Diffusivity, mm2/s 25
29
Thermal Shock Resistance, points 12 to 26
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Copper (Cu), % 93.8 to 96.5
58 to 62
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 0 to 0.050
0 to 0.090
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0.030 to 0.35
0 to 0.010
Silicon (Si), % 0
0 to 0.25
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 3.5 to 4.9
0 to 1.5
Zinc (Zn), % 0 to 0.3
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7