MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. N07750 Nickel

C51100 bronze belongs to the copper alloys classification, while N07750 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 50
25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 230 to 410
770
Tensile Strength: Ultimate (UTS), MPa 330 to 720
1200
Tensile Strength: Yield (Proof), MPa 93 to 700
820

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 190
960
Melting Completion (Liquidus), °C 1060
1430
Melting Onset (Solidus), °C 970
1400
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 84
13
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 20
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
60
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 3.0
10
Embodied Energy, MJ/kg 48
150
Embodied Water, L/kg 340
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
270
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
1770
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 10 to 22
40
Strength to Weight: Bending, points 12 to 20
30
Thermal Diffusivity, mm2/s 25
3.3
Thermal Shock Resistance, points 12 to 26
36

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 93.8 to 96.5
0 to 0.5
Iron (Fe), % 0 to 0.1
5.0 to 9.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0.030 to 0.35
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 3.5 to 4.9
0
Titanium (Ti), % 0
2.3 to 2.8
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0