MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. S17400 Stainless Steel

C51100 bronze belongs to the copper alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 50
11 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
75
Shear Strength, MPa 230 to 410
570 to 830
Tensile Strength: Ultimate (UTS), MPa 330 to 720
910 to 1390
Tensile Strength: Yield (Proof), MPa 93 to 700
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 190
850
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 970
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
14
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 48
39
Embodied Water, L/kg 340
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
880 to 4060
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 22
32 to 49
Strength to Weight: Bending, points 12 to 20
27 to 35
Thermal Diffusivity, mm2/s 25
4.5
Thermal Shock Resistance, points 12 to 26
30 to 46

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 93.8 to 96.5
3.0 to 5.0
Iron (Fe), % 0 to 0.1
70.4 to 78.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0.030 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 3.5 to 4.9
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0