MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. S17700 Stainless Steel

C51100 bronze belongs to the copper alloys classification, while S17700 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is S17700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.5 to 50
1.0 to 23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 230 to 410
740 to 940
Tensile Strength: Ultimate (UTS), MPa 330 to 720
1180 to 1650
Tensile Strength: Yield (Proof), MPa 93 to 700
430 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 190
890
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 970
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
15
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 32
13
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 48
40
Embodied Water, L/kg 340
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
15 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
460 to 3750
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 22
42 to 59
Strength to Weight: Bending, points 12 to 20
32 to 40
Thermal Diffusivity, mm2/s 25
4.1
Thermal Shock Resistance, points 12 to 26
39 to 54

Alloy Composition

Aluminum (Al), % 0
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 93.8 to 96.5
0
Iron (Fe), % 0 to 0.1
70.5 to 76.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
6.5 to 7.8
Phosphorus (P), % 0.030 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 3.5 to 4.9
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0