MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. S46800 Stainless Steel

C51100 bronze belongs to the copper alloys classification, while S46800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.5 to 50
25
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 67 to 93
79
Shear Modulus, GPa 42
77
Shear Strength, MPa 230 to 410
300
Tensile Strength: Ultimate (UTS), MPa 330 to 720
470
Tensile Strength: Yield (Proof), MPa 93 to 700
230

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 190
920
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 970
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
23
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 20
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
12
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 48
37
Embodied Water, L/kg 340
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
98
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
130
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 22
17
Strength to Weight: Bending, points 12 to 20
18
Thermal Diffusivity, mm2/s 25
6.1
Thermal Shock Resistance, points 12 to 26
16

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 93.8 to 96.5
0
Iron (Fe), % 0 to 0.1
76.5 to 81.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.1 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0.030 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 3.5 to 4.9
0
Titanium (Ti), % 0
0.070 to 0.3
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0