MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. ASTM A369 Grade FP91

C51900 bronze belongs to the copper alloys classification, while ASTM A369 grade FP91 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 29
19
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
75
Shear Strength, MPa 320 to 370
410
Tensile Strength: Ultimate (UTS), MPa 380 to 620
670
Tensile Strength: Yield (Proof), MPa 390 to 570
460

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 180
600
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 930
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 66
26
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 14
10

Otherwise Unclassified Properties

Base Metal Price, % relative 33
7.0
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 51
37
Embodied Water, L/kg 360
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 180
110
Resilience: Unit (Modulus of Resilience), kJ/m3 680 to 1450
560
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 19
24
Strength to Weight: Bending, points 13 to 18
22
Thermal Diffusivity, mm2/s 20
6.9
Thermal Shock Resistance, points 14 to 22
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 91.7 to 95
0
Iron (Fe), % 0 to 0.1
87.3 to 90.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0.030 to 0.35
0 to 0.025
Silicon (Si), % 0
0.2 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 5.0 to 7.0
0
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.3
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0