MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. ASTM A514 Steel

C51900 bronze belongs to the copper alloys classification, while ASTM A514 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is ASTM A514 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 29
18 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 320 to 370
490 to 520
Tensile Strength: Ultimate (UTS), MPa 380 to 620
790 to 830
Tensile Strength: Yield (Proof), MPa 390 to 570
690 to 770

Thermal Properties

Latent Heat of Fusion, J/g 200
250 to 260
Maximum Temperature: Mechanical, °C 180
400 to 440
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 930
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 66
37 to 51
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
7.2 to 7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.3 to 8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 33
2.3 to 3.8
Density, g/cm3 8.8
7.8 to 7.9
Embodied Carbon, kg CO2/kg material 3.2
1.6 to 1.8
Embodied Energy, MJ/kg 51
21 to 25
Embodied Water, L/kg 360
48 to 57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 180
140 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 680 to 1450
1280 to 1590
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 19
28 to 29
Strength to Weight: Bending, points 13 to 18
24 to 25
Thermal Diffusivity, mm2/s 20
10 to 14
Thermal Shock Resistance, points 14 to 22
23 to 24