MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. AWS E3155

C51900 bronze belongs to the copper alloys classification, while AWS E3155 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is AWS E3155.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 14 to 29
23
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
81
Tensile Strength: Ultimate (UTS), MPa 380 to 620
770

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 930
1410
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 66
13
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 33
70
Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 3.2
7.7
Embodied Energy, MJ/kg 51
110
Embodied Water, L/kg 360
300

Common Calculations

Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 19
26
Strength to Weight: Bending, points 13 to 18
22
Thermal Diffusivity, mm2/s 20
3.3
Thermal Shock Resistance, points 14 to 22
20

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 91.7 to 95
0 to 0.75
Iron (Fe), % 0 to 0.1
23.3 to 36.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
1.0 to 2.5
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0.030 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.0 to 7.0
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0