MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. AWS E316L

C51900 bronze belongs to the copper alloys classification, while AWS E316L belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is AWS E316L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 29
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
78
Tensile Strength: Ultimate (UTS), MPa 380 to 620
550

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Melting Completion (Liquidus), °C 1040
1440
Melting Onset (Solidus), °C 930
1390
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 66
15
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
20
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.2
4.0
Embodied Energy, MJ/kg 51
55
Embodied Water, L/kg 360
160

Common Calculations

Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 19
19
Strength to Weight: Bending, points 13 to 18
19
Thermal Diffusivity, mm2/s 20
4.0
Thermal Shock Resistance, points 14 to 22
14

Alloy Composition

Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 91.7 to 95
0 to 0.75
Iron (Fe), % 0 to 0.1
58.6 to 69.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
11 to 14
Phosphorus (P), % 0.030 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.0 to 7.0
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0