MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. EN 1.7767 Steel

C51900 bronze belongs to the copper alloys classification, while EN 1.7767 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is EN 1.7767 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 29
20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
74
Shear Strength, MPa 320 to 370
420 to 430
Tensile Strength: Ultimate (UTS), MPa 380 to 620
670 to 690
Tensile Strength: Yield (Proof), MPa 390 to 570
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
480
Melting Completion (Liquidus), °C 1040
1470
Melting Onset (Solidus), °C 930
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 66
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 33
4.5
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.2
2.4
Embodied Energy, MJ/kg 51
33
Embodied Water, L/kg 360
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 180
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 680 to 1450
570 to 650
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 19
24
Strength to Weight: Bending, points 13 to 18
22
Thermal Diffusivity, mm2/s 20
11
Thermal Shock Resistance, points 14 to 22
19 to 20

Alloy Composition

Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 91.7 to 95
0 to 0.25
Iron (Fe), % 0 to 0.1
93.8 to 95.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0.030 to 0.35
0 to 0.015
Silicon (Si), % 0
0 to 0.15
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 5.0 to 7.0
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0