MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. EN 2.4952 Nickel

C51900 bronze belongs to the copper alloys classification, while EN 2.4952 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is EN 2.4952 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 29
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
74
Shear Strength, MPa 320 to 370
700
Tensile Strength: Ultimate (UTS), MPa 380 to 620
1150
Tensile Strength: Yield (Proof), MPa 390 to 570
670

Thermal Properties

Latent Heat of Fusion, J/g 200
330
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 1040
1350
Melting Onset (Solidus), °C 930
1300
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 66
12
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 14
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
55
Density, g/cm3 8.8
8.3
Embodied Carbon, kg CO2/kg material 3.2
9.8
Embodied Energy, MJ/kg 51
140
Embodied Water, L/kg 360
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 180
170
Resilience: Unit (Modulus of Resilience), kJ/m3 680 to 1450
1180
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 12 to 19
38
Strength to Weight: Bending, points 13 to 18
29
Thermal Diffusivity, mm2/s 20
3.1
Thermal Shock Resistance, points 14 to 22
33

Alloy Composition

Aluminum (Al), % 0
1.0 to 1.8
Boron (B), % 0
0 to 0.0080
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 91.7 to 95
0 to 0.2
Iron (Fe), % 0 to 0.1
0 to 1.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
65 to 79.2
Phosphorus (P), % 0.030 to 0.35
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 5.0 to 7.0
0
Titanium (Ti), % 0
1.8 to 2.7
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0