MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. Nickel 600

C51900 bronze belongs to the copper alloys classification, while nickel 600 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is nickel 600.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 29
3.4 to 35
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
75
Shear Strength, MPa 320 to 370
430 to 570
Tensile Strength: Ultimate (UTS), MPa 380 to 620
650 to 990
Tensile Strength: Yield (Proof), MPa 390 to 570
270 to 760

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1040
1410
Melting Onset (Solidus), °C 930
1350
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 66
14
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 14
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 33
55
Density, g/cm3 8.8
8.5
Embodied Carbon, kg CO2/kg material 3.2
9.0
Embodied Energy, MJ/kg 51
130
Embodied Water, L/kg 360
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 180
31 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 680 to 1450
190 to 1490
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 12 to 19
21 to 32
Strength to Weight: Bending, points 13 to 18
20 to 26
Thermal Diffusivity, mm2/s 20
3.6
Thermal Shock Resistance, points 14 to 22
19 to 29

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 91.7 to 95
0 to 0.5
Iron (Fe), % 0 to 0.1
6.0 to 10
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
72 to 80
Phosphorus (P), % 0.030 to 0.35
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 5.0 to 7.0
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0