MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. SAE-AISI 4130 Steel

C51900 bronze belongs to the copper alloys classification, while SAE-AISI 4130 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is SAE-AISI 4130 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 29
13 to 26
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 320 to 370
340 to 640
Tensile Strength: Ultimate (UTS), MPa 380 to 620
530 to 1040
Tensile Strength: Yield (Proof), MPa 390 to 570
440 to 980

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 930
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 66
43
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
2.4
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.5
Embodied Energy, MJ/kg 51
20
Embodied Water, L/kg 360
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 180
83 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 680 to 1450
500 to 2550
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 19
19 to 37
Strength to Weight: Bending, points 13 to 18
19 to 29
Thermal Diffusivity, mm2/s 20
12
Thermal Shock Resistance, points 14 to 22
16 to 31

Alloy Composition

Carbon (C), % 0
0.28 to 0.33
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 91.7 to 95
0
Iron (Fe), % 0 to 0.1
97.3 to 98.2
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.4 to 0.6
Molybdenum (Mo), % 0
0.15 to 0.25
Phosphorus (P), % 0.030 to 0.35
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 5.0 to 7.0
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0