MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. SAE-AISI 5130 Steel

C51900 bronze belongs to the copper alloys classification, while SAE-AISI 5130 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is SAE-AISI 5130 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 29
12 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 320 to 370
310 to 390
Tensile Strength: Ultimate (UTS), MPa 380 to 620
500 to 640
Tensile Strength: Yield (Proof), MPa 390 to 570
330 to 530

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 930
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 66
45
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
2.2
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.4
Embodied Energy, MJ/kg 51
19
Embodied Water, L/kg 360
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 180
74 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 680 to 1450
290 to 750
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 19
18 to 23
Strength to Weight: Bending, points 13 to 18
18 to 21
Thermal Diffusivity, mm2/s 20
12
Thermal Shock Resistance, points 14 to 22
16 to 20

Alloy Composition

Carbon (C), % 0
0.28 to 0.33
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 91.7 to 95
0
Iron (Fe), % 0 to 0.1
97.2 to 98.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.7 to 0.9
Phosphorus (P), % 0.030 to 0.35
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 5.0 to 7.0
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0