MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. N06210 Nickel

C51900 bronze belongs to the copper alloys classification, while N06210 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is N06210 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 14 to 29
51
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
85
Shear Strength, MPa 320 to 370
560
Tensile Strength: Ultimate (UTS), MPa 380 to 620
780
Tensile Strength: Yield (Proof), MPa 390 to 570
350

Thermal Properties

Latent Heat of Fusion, J/g 200
330
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 1040
1570
Melting Onset (Solidus), °C 930
1510
Specific Heat Capacity, J/kg-K 380
420
Thermal Expansion, µm/m-K 18
12

Otherwise Unclassified Properties

Base Metal Price, % relative 33
85
Density, g/cm3 8.8
9.0
Embodied Carbon, kg CO2/kg material 3.2
17
Embodied Energy, MJ/kg 51
250
Embodied Water, L/kg 360
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 180
320
Resilience: Unit (Modulus of Resilience), kJ/m3 680 to 1450
280
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
22
Strength to Weight: Axial, points 12 to 19
24
Strength to Weight: Bending, points 13 to 18
21
Thermal Shock Resistance, points 14 to 22
22

Alloy Composition

Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
18 to 20
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 91.7 to 95
0
Iron (Fe), % 0 to 0.1
0 to 1.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
18 to 20
Nickel (Ni), % 0
54.8 to 62.5
Phosphorus (P), % 0.030 to 0.35
0 to 0.020
Silicon (Si), % 0
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tantalum (Ta), % 0
1.5 to 2.2
Tin (Sn), % 5.0 to 7.0
0
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0