MakeItFrom.com
Menu (ESC)

C52100 Bronze vs. AISI 205 Stainless Steel

C52100 bronze belongs to the copper alloys classification, while AISI 205 stainless steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (15, in this case) are not shown.

For each property being compared, the top bar is C52100 bronze and the bottom bar is AISI 205 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 380 to 800
800 to 1430

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
880
Melting Completion (Liquidus), °C 1030
1380
Melting Onset (Solidus), °C 880
1340
Specific Heat Capacity, J/kg-K 370
480
Thermal Expansion, µm/m-K 18
18

Otherwise Unclassified Properties

Base Metal Price, % relative 34
11
Density, g/cm3 8.8
7.6
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 55
37
Embodied Water, L/kg 370
150

Common Calculations

Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
26
Strength to Weight: Axial, points 12 to 25
29 to 52
Strength to Weight: Bending, points 13 to 22
25 to 37
Thermal Shock Resistance, points 14 to 28
16 to 29

Alloy Composition

Carbon (C), % 0
0.12 to 0.25
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 89.8 to 93
0
Iron (Fe), % 0 to 0.1
62.6 to 68.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
14 to 15.5
Nickel (Ni), % 0
1.0 to 1.7
Nitrogen (N), % 0
0.32 to 0.4
Phosphorus (P), % 0.030 to 0.35
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 7.0 to 9.0
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0