MakeItFrom.com
Menu (ESC)

C52100 Bronze vs. N06255 Nickel

C52100 bronze belongs to the copper alloys classification, while N06255 nickel belongs to the nickel alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is C52100 bronze and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
81
Tensile Strength: Ultimate (UTS), MPa 380 to 800
660

Thermal Properties

Latent Heat of Fusion, J/g 200
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 1030
1470
Melting Onset (Solidus), °C 880
1420
Specific Heat Capacity, J/kg-K 370
450
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 34
55
Density, g/cm3 8.8
8.5
Embodied Carbon, kg CO2/kg material 3.4
9.4
Embodied Energy, MJ/kg 55
130
Embodied Water, L/kg 370
270

Common Calculations

Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 12 to 25
22
Strength to Weight: Bending, points 13 to 22
20
Thermal Shock Resistance, points 14 to 28
17

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 89.8 to 93
0 to 1.2
Iron (Fe), % 0 to 0.1
6.0 to 24
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 9.0
Nickel (Ni), % 0
47 to 52
Phosphorus (P), % 0.030 to 0.35
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 7.0 to 9.0
0
Titanium (Ti), % 0
0 to 0.69
Tungsten (W), % 0
0 to 3.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0